FUNDAMENTALS OF EARTH SCIENCE I

FALL SEMESTER 2018

MINERALS Rock's elementary building blocks

©Wikipedia

★ What is a mineral?

A mineral is
Repeating unit cell
NaCl

1. natural
Image: solid

2. solid
Image: solid

3. inorganic (coal is not a mineral)

...characterized by

- 4. a specific chemical composition
- 5. a regular, repeating 3D arrangement of atoms (crystal structure)

• The regular **shape of crystals** reflects the orderly arrangement of atoms

The structure of a mineral (how atoms are distributed in 3D) depends on its chemical composition, and is also a function of temperature and pressure (e.g. graphite vs. diamond).

Diamond

Moderate T and P

Graphite

* Atoms, isotopes

Atoms of an element with different numbers of neutrons are different **isotopes** of this element.

Each element is characterized by its atomic number.

Atomic number = number of electrons (protons)

Atomic mass = sum of the masses of protons and neutrons

By convention, one atom of ¹²C has a mass of 12 amu (atomic mass unit)

The atomic mass of an element depends on the relative abundance of its isotopes

Elements of major abundance in Earth's crust			Elements of lesser abundance but of major geologic importance				Periodic table of elements										
Hydroger 1 H 1.0079 Lithium 3 Lit 6.941 Sodium 11 Na 22.9898	Beryllium 4 Be 9.0122 Magnesium 12 Mg 24.3050	e 5 6 7 8 9 22 Atomic mass B C N O F 10.811 12.011 14.0067 15.9994 18.9984 Aluminum Silicon Phosphorus Sulfur Chlorine 13 14 15 16 17 g Si P S Cl								9 F 18.9984 Chlorine 17	Helium 2 He 4.0026 Neon 10 Ne 20.1797 Argon 18 Ar 39.948						
Potassium 19	20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
K 39.0983	Ca 40.078	Sc 44.9559	Ti 47.867	V 50.9415	Cr 51.9961	Mn 54.9380	Fe 55.845	Co	Ni 58.6934	Cu 63.546	Zn 65.39	Ga 69.723	Ge 72.61	As 74.9216	Se 78.96	Br 79.904	Kr 83.80
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
85.4678		88.9059	91.224	92.9064	95.94	(97.907)	101.07	102.9055	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	126.9045	131.29
Cesium 55	Barium 56	Lanthanum 57	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
Cs	Ba	La	Hf	Ta	Ŵ	Re	Ös	lr	Pt	Au	Ĥg	TI	Pb	Bi	Po	Ăt	Rn
132.905	137.327	138.9055	178.49	180.9479	183.84	186.207	190.2	192.22	195.08	196.9665	200.59	204.3833	207.2	208.9804	(208.98)	(209.99)	(222.02)
Francium 87	Radium 88	Actinium 89	Rutherfordium	Dubnium 105	Seaborgium 106	Bohrium 107	Hassium 108	Meitnerium 109			Ununbium 112						
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt			Uub						
(223.02)	(226.0254)	(227.0278)	(261.11)	(262.11)	(263.12)	(262.12)	(265)	(266)			(277)						
			ſ	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
		()		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Ho	Er	Tm	Yb	Lu
		1	MI	140.115	140.9076	144.24	(144.91)	150.36	151.965	157.25	158.9253	162.50	164.9303	167.26	168.9342	173.04	174.967
<u> </u>																	
				Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Noblelium 102	Lawrencium 103
				Th	Pa	U	Np	Pu	Âm	Ċm	Bk	Ĉŕ	Es	Fm	Md	No	Lr
The pe	The periodic table.								(262.11)								

★ Chemical bonds

3 types of chemical bonds exist in minerals:

Covalent bond (electrons shared)

An atom shares one or more electrons with another atom, electrons being attracted by the nucleus of each atom.

Jonic bon (electrons transferred)

An atom gains one or more electrons from another atom (transfer of electrons). The positively charged ion (cation = atom that has lost one or more electrons) is attracted by the negatively charged ion (anion = atom that has gained one or more electrons)

B. Metallic bond (electrons freely moving)

Atoms which have a strong tendency to lose electrons (cations) are held together by their attraction to free (mobile) electrons ("cations in a sea of electrons").

Electron sharing in Diamond (2D projection)

POLYMORPHS

EXAMPLE: halite (NaCl, sodium chloride, "table salt")

The sodium atom loses one electron (cation) and the chlorine atom gains one (anion)

Each Na⁺ is surrounded by 6 Cl⁻, and vice versa

EXAMPLES: gold, silver, copper, some sulfides...

★ Silicate minerals

BASIC STRUCTURAL UNIT: silicon-oxygen tetrahedron = [SiO₄]⁴⁻ = silicate anion

Each O can share one e- with another Si (covalent bonds) or bind to a cation (ionic bonds) \rightarrow possibility of combining covalent and ionic bonds

EXAMPLES of silicate minerals

1. Quartz (SiO₂)

Each Si surrounded by 4 O, and each O linked to 2 Si

Silicate tetrahedra linked by covalent bonds

О

Si

www.quartzpage.de

3D structure of Quartz

Electron sharing in SiO₂ (2D projection)

Combination of covalent and ionic bonds

2. Olivine $[(Mg, Fe)_2 SiO_4]$

Silicate anions ([SiO4]⁴⁻) are linked to cations (Fe²⁺ or Mg²⁺) by ionic bonds

Fosterite: $Mg_2SiO_4 \ \uparrow$ Solid solution Fayalite: $Fe_2SiO_4 \ \downarrow$

The silicate anions are held together by metallic cations (Fe²⁺ or Mg²⁺). The -4 charge of each silicate anion is balanced by 2 metallic cations of charge +2 (Fe²⁺ or Mg²⁺)

http://www.tulane.edu/~sanelson/eens211/weathering&clayminerals.htm

★ Formation of minerals

- **Crystallization**: process by which atoms in a gas or a liquid assemble in an orderly 3D pattern (lattice) to form a solid substance (mineral crystal).
- Contexts in which new minerals can form:
 - **Saturation** of brines as water is removed by evaporation and/or dissolved ions are added to the solution, the solution becomes saturated and salt precipitate into crystals)
 - Phase change liquid-solid, gas-solid
 - **Biomineralization** biologically-induced precipitation of minerals – biominerals – (e.g. corals, mollusks...)
 - **Chemical weathering** transformation of a preexisting rock 4.) at/near Earth's surface (e.g., chemical reactions with rainwater >> 2 KAISi₃O₈ + 2 H₂CO₃ + H₂O \rightarrow Al₂Si₂O₅(OH)₄ + 4 SiO₂ + 2 K⁺ + 2 HCO₃⁻)

5.) Metamorphism – recrystallization of a preexisting rock at the solid-state resulting from variations in T, P or in contact with hydrothermal fluids deep inside the crust.

1. Saturation of brines

Sebkha El Melah is a 150-km² **evaporite** basin located Along Tunisia's southeastern coast. Sea water rich in dissolved minerals is occasionally discharged into the lake and quickly evaporates once the lake becomes isolated from the sea.

Major ions precipitating in the lake are Na⁺, K^+ , Mg^{2+} , Cl^- , and SO_4^{2-} .

Minerals formed:

NaCl	Halite
KCI	Sylvite
MgSO ₄ .H ₂ O	Kieserite

Landsat images (http://earthobservatory.nasa.gov)

Lake Urmia (Iran)

US DEPARTMENT OF THE INTERIOR/USGS

"The three rivers that supply nearly 90% of the water flowing into Urmia have all been dammed for irrigation and hydropower. And groundwater recharge to those rivers has tapered thanks to an estimated 40,000 illegal wells that have lowered the water table, Iranian experts say." Science, Stone 2015

Messinian (~5.5 Ma) evaporite composed of gypsum Source: F. Boulvain (University of Liege) Calcite-aragonite Gypsum Anhydrite Halite Sylvite Borates Nitrates

 $CaCO_3$ $CaSO_4.2H_2O$ $CaSO_4$ NaCl KCl $Ex: Na_2B_4O_7.5H_2O$ $Ex: KNO_3$

Messinian salinity crisis: period during which the Mediterranean Sea partly or nearly completely evaporated periodically around 5.5 Ma ago until the Atlantic Ocean re-flooded the basin.

Formation of natural gypsum megacrystals in Naica, Mexico

Garcia-Ruiz et al., 2007. Geology, vol. 35, p. 327-330

Very large crystals of gypsum (CaSO₄.2H₂O) precipitated out of a hydrothermal fluid saturated in calcium and sulfate ions. A nearly stable temperature (~54°C) and a constant supply of calcium and sulfate ions explain the formation of these very large crystals, which probably have been growing for more than a million years.

©Wikipedia

2. Phase change (e.g. solid formed by cooling of a liquid)

Rocks formed by **cooling of a magma/lava** are called **igneous rocks**.

GENERAL PROPERTY OF CRYSTALLIZATION:

The **size of crystals** depends on the **crystallization rate** and the **space** available for crystal growth.

ROCK TEXTURE AS A FUNCTION OF CRYSTALLIZATION RATE

Igneous rocks are mainly composed of silicate minerals.

EXAMPLE: aragonite and calcite

Many marine organisms produce hard parts made of CaCO₃

Foraminifera

O. R. Anderson (serc.carleton.edu)

www.physorg.com

Molluscs

www.discoverlife.org

Calcareous algae

Photo: P. Edmunds

EXAMPLE: radiolarians, diatoms

Radiolarite (Japan)

www.radiolaria.org

→ Diatoms

Like foraminifers and radiolarians, diatoms are single-celled organisms. However, diatoms can sometimes form colonies of attached individuals.

Photo: Sarah Spaulding

4KAlSi₃O₈ + 4H⁺ + 2H₂O \rightarrow 4K⁺ + Al₄Si₄O₁₀(OH)₈ + 8SiO₂ Orthoclase Kaolinite Quartz

Hydrolysis of granite

Remobilized and transported by rain water and deposited in depressions

http://www.eacrh.net/ojs/index.p hp/crossroads/article/view/14/Vo I3_Seyock_html

NB: Kaolinite is primarily used in the paper industry (paper coating)

- Process by which a rock experiences at the solid state a transformation of one or a combination of the following characteristics:
 - Chemical composition
 - Mineralogical composition
 - Texture
- One or a combination of the following 3 factors are involved in metamorphism:
 - Change in temperature
 - Change in pressure
 - Contact with hydrothermal fluids
- Most metamorphic rocks form at depths of 10 to 30 km (middle to lower half of continental crust)

SEE CHAPTER ON METAMORPHIC ROCKS

***** Common classes of minerals

TABLE 3.1 Some Chemical Classes of Minerals						
Class	Defining Anions	Example				
Native elements	None: no charged ions	Copper metal (Cu)				
Oxides	Oxygen ion (O ²⁻)	Hematite (Fe ₂ O ₃)				
Halides	Chloride (Cl⁻), fluoride (F⁻), bromide (Br⁻), iodide (l⁻)	Halite (NaCl)				
Carbonates	Carbonate ion (CO ₃ ²⁻)	Calcite (CaCO ₃)				
Sulfates	Sulfate ion (SO ₄ ²⁻)	Anhydrite (CaSO ₄)				
Silicates	Silicate ion (SiO ₄ ⁴⁻)	Olivine (Mg,Fe) ₂ SiO ₄				
Sulfides	Sulfide ion (S ²⁻)	Pyrite (FeS ²)				

Understanding Earth

• Main rock-forming minerals

Sulfides

Rich in metal sulfides and oxides (Zn, Fe, Cu, Mn)

EXAMPLES: pyrite (FeS₂)

Pyrite

Understanding Earth

Oxides and hydroxides

EXAMPLES: hematite (Fe_2O_3), goethite (FeO(OH)), pyrolusite (MnO_2) Important **iron ore**

Banded Iron Formations

Ferromanganese nodules on seafloor

Layer rich in iron oxide

JAMSTEC Growth rate: 1 cm per million years

NOAA

* Physical properties of minerals

1. HARDNESS

TABLE 3.2	Mohs Scale of Hardness						
Mineral	Scale Number	Common Objects					
Talc	1						
Gypsum	2	Fingernail *					
Calcite	3	Copper coin					
Fluorite	4						
Apatite	5	Knife blade					
Orthoclase	6	Window glass					
Quartz	7	Steel file					
Topaz	8						
Corundum	9						
Diamond	10						

- Depends on crystal structure
 Silicates with sheet structure (mica) softer than silicates composed of isolated tetrahedra (olivine)
- Depends on chemical bonds

Harder minerals are those with:

- Covalent bonds
- Smaller atoms/ions**
- Ions with large charges
- More closely packed atoms/ions**

* Gypsum can be scratched by the fingernail

** Control distance between opposite charges The closer, the stronger the bonds

Chemical bond strength varies along different planes within a crystal. A cleavage defines a planar surface along which the crystal tends to split because **bonds** are **weaker** along this surface.

Mica:

Calcite:

Pyroxene and amphibole:

Understanding Earth 6th ed.

Cleavage in mica:

Understanding Earth 6th ed.

 Breakage that is not flat, and occurring along irregular surfaces different from cleavage planes

Conchoidal fracture (quartz)

Splintery fracture (Asbestos = fibrous silicates minerals)

www.consrv.ca.qov

= the way minerals reflect light

- Metallic (pyrite)
- Vitreous (quartz)
- Pearly (muscovite)
- Silky (asbestos)

• ...

Muscovite

www.mindat.org

 The color of a mineral depends on how light behaves after it reaches the surface of the mineral (some is reflected; some is transmitted through; some is absorbed). It is related to the composition of the mineral (including the presence of trace elements).

Citrine (quartz containing traces of Fe)

Debra Wilson (www.carnegiemnh.org)

• **Streak** = color of the fine deposit left when a mineral is scraped across an abrasive surface.

Hematite (brownish red streak)

Understanding Earth 6th ed.

- Mass per unit of volume (g/cm³)
- **Specific gravity**: weight of a volume of a mineral divided by the weight of an equal volume of pure water at a given T and P Examples:
 - Pyrite (5) Calcite (2.71) Quartz (2.65) Halite (2.16)
- Density depends on atoms' mass and atoms' packing
- Increase in pressure and temperature affects mineral structure and density.

Example: diamond/graphite, (Mg, Fe)₂SiO₄ (olivine)

7. CRYSTAL HABIT

- Crystal habit is the **shape of individual crystals**.
- Prism pyramidal extremity (quartz)

www.mindat.org Cubic (halite)

Understanding Earth 6th

The crystal shape reflects the **internal arrangement** of atoms/ions, and also the **speed and direction of crystal growth**.

> Pyramidal (calcite)

www.mindat.org

Fibrous (asbestos)

www.consrv.ca.gov

Cubic (pyrite)

www.mindat.org